Cost-Effective Methods for Improving the Corrosion Resistance of Concrete

David McDonald, Ph.D., P.E., FACI, Epoxy Interest Group of CRSI
Constraints

• Available resources
 – Don’t have unlimited funds
 – Don’t wish to continually repair
Chloride

- Deicing salts
- Marine waters

- Mechanism
 - iron chloro-complex (green rust)
 - expansion

Not well understood!

Courtesy W.R. Meadows
Carbonation

CO_2 reacts with cement

Carbonated concrete
Reinforcing Steel in Concrete

Chloride

carbonation

pH >13
CONCRETE MODIFICATION
Concrete Modification

- Reduce permeability
- w/cm (<0.40)
- Pozzolans
 - silica fume (< 5%)
 - fly ash (< 30%)
 - slag cement (< 50%)

New materials, such as polycarboxylate help improve concrete
Corrosion Inhibitors

- **Materials**
 - calcium nitrite
 - amine carboxylate
 - amine-ester
 - alkenyl carboxylate

- **Improves chloride threshold**
 - Dependent on the dosage

- **212.3R-10: Report on Chemical Admixtures for Concrete**
BAR MATERIALS
Types

- Epoxy-coated
 - ASTM A775, A934
- Galvanized
 - ASTM A767
- Stainless Steel
 - ASTM A955
- Others
 - A1035 – Low carbon, chrome
 - A1055 – Dual Clad
 - Glass Fiber
Epoxy-coated Reinforcing Steel

- A775: Green
- A934: Purple or Grey
- Most widely used and researched material
- Significant material improvements over 37 years
- **Over 70,000 bridges**
 - ~ 2500 per year
Galvanized Reinforcing

- ASTM A767
- Develop oxide layer for protection
 - Dependant on cement and zinc chemistry
 - Microstructure may significantly affect performance
- Only 1050 bridges
 - ~ 40 per year
Stainless Steel Reinforcing

• ASTM A955
• Chemistry/microstructure
 – Excellent: 316, 2205, 2304
 – Fair: 2201, 3Cr12
• “Stainless steel isn’t”
 – Roper 1986
• ?? bridges
Other Materials

• Single source or proprietary
 – ASTM A1035/3CR12
 • Low grade stainless steels
 – ASTM A1055
 • Epoxy and zinc layers
 – Glass and Basalt fiber bars
PERFORMANCE
Tutti Model

- Initiation Period
- Propagation Period
- Corrosion Starts
- Damage

Time

Damage
Laboratory Tests

- Voltmeter
- 10 Ohm
- 15% NaCl solution
- 19 mm (3/4 in.)
- Crack
- 178 mm (7.0 in.)
- 152 mm (6.0 in.)

Cracked Beam (CB) Specimen
Corrosion Thresholds

- Kansas University Study for KDOT and FHWA

- Black reinforcing: 1.6 (lb/yd3)
- Corrosion inhibitors: 0.8 – 3.0
- Galvanized: 2.6
- Epoxy-coated reinforcing: 7.3
- Stainless 2205 reinforcing: 26.4
Propagation Period

- Cracked Concrete
- Black bars: 14 years
- Corrosion inhibitor: 33
- Epoxy-coated bars: 50
- ECR + Corrosion inhibitors: 63
- Stainless steel: > 100
PERFORMANCE
West Virginia 2009

Deck with both epoxy and black bar sections
West Virginia 2009

Black - Delaminated concrete after 17 years

Epoxy - No delaminations after 34 years

Deck with both epoxy and black bar sections
New York State Department of Transportation 2009

• Statistical analysis of 17,000 structures
• Structural decks with epoxy-coated reinforcement perform significantly better than those with uncoated reinforcement, especially in the later years.
PA deck condition 2010
1973 - 1983

Repairs likely

Percent of Ratings vs. NBI Grade
PA deck condition 2010
1973 - 1983

Epoxy – 3x less likely to exhibit low deck ratings
Florida Bridges with ECR

After Sagues et al.

5 structures
Poor bars
Poor concrete

290 structures
Good bars
Good concrete

Percent Damage

Age (years)

0 2 4 6 8 10

0 20 40 60 80 100

After Sagues et al.
Stainless in Marine (1)

- Progreso Pier (1940)
- Generally good performance

- “serious laminated corrosion on the visible reinforcement and the reinforcement area was reduced to approximately 60 – 70%.”
Stainless in Marine (2)

- Magnetic Silencing Facility, Point Loma
- Losses of stainless steel cross-section exceeded 50 percent
- The reinforcement is inadequate for its environment
 - despite being of stainless steel composition, which has generally been considered superior in marine concrete

http://farm3.static.flickr.com/2718/4389549311_eb08812cb4.jpg
COST EFFECTIVENESS
Life-Cycle Cost Analysis (LCCA)

• Calculate net present value
 – Determine initial and repair costs
 – Timing of repairs
 – Discount rate
 • No consensus as to the appropriate value
 • 3 to 5 percent are commonly recommended
Is stainless in the budget?
Life Cycle Cost

ECR provides lowest life cycle cost

$/yd^2

- Uncoated: $444
- Epoxy: $237, $207
- Stainless: $319
- Inhibitor + Black: $308 - $432
- Inhibitor + epoxy: $224 - $242
OTHER FACTORS
Sustainability

• Pozzolans
 – reduce carbon footprint
 – post-industrial waste

• Recycled Content
 – Epoxy-coated and galvanized bars >95%
 – Stainless Steel >75%

• Processing Energy
 – Stainless steel > epoxy-coated or galvanized bars
Availability

• Pozzolans
 – East of Mississippi

• Galvanizing
 – Experience
 – Bar lengths (40 ft)
 – Chromate treatment

• Epoxy-coated
 – Bar lengths (60 ft)
 – Widely available

• Stainless steel reinforcing
 – limited manufacturers
 – substantial lead times
 – Identification/theft

• Other Products
 – Proprietary
 – Lead times
 – Bent bars
CONCLUSIONS
Summary And Conclusions

• Wide choice in the selection of materials for corrosion protection
• Low water-cement ratio
• Pozzolans
 – Cracks should be repaired
• Epoxy-coated bars
 – Proven protection over 40 years
• Stainless
 – Cost, performance

• Overall performance is not the only criteria
 – Sustainability
 – Initial and life-cycle cost
 – Availability

http://www.deldot.gov