Recent DOT Studies on the Long-Term Performance of Epoxy-coated **Reinforcing Steel ABCD - 24th ANNUAL BRIDGE** CONFERENCE David McDonald, Ph.D., P.E., FACI November 9, 2012

Epoxy Bar Use

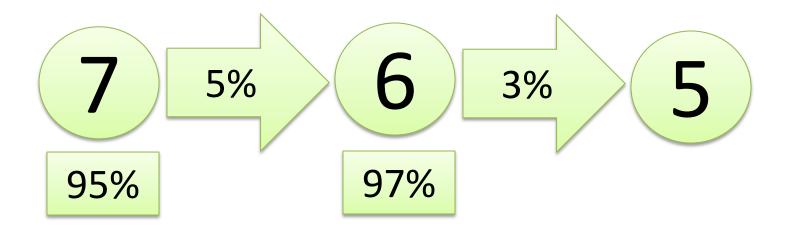
- 850,000,000 ft² of decks
 - ->70,000 bridges in the US alone
 - ~600,000 ton/yr. or 10 15% of all rebar in NA
- USA, Canada, Middle East, Japan, and India

Woodrow Wilson Bridge, Virginia/Maryland

I-35 Minneapolis, Minnesota

Bridge of Honor, Ohio

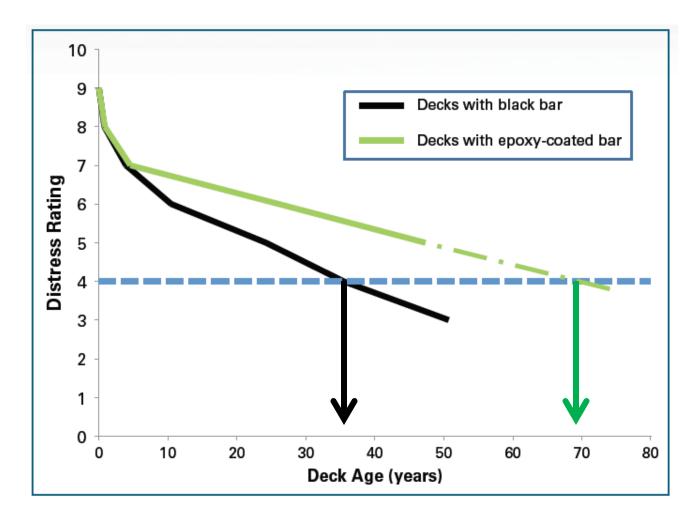
Biloxi Bay Bridge, Mississippi


MICHIGAN DOT STUDY (2010)

Background

- Estimate the service life of bridge decks containing black reinforcing steel and epoxycoated reinforcing steel
- Time to reach a poor condition.
 - Rating of 4 or less in the Bridge Safety Inspection Report

Markov analysis


- Transition matrices
 - describe the probability that a bridge element will change to another condition state.
- Convert to a deterioration rate

Data

- Deck surface ratings from 2004 to 2010
- 1,790 bridge decks
 - 766 contained epoxy-coated reinforcing steel
 - 1,024 contained black reinforcing steel.

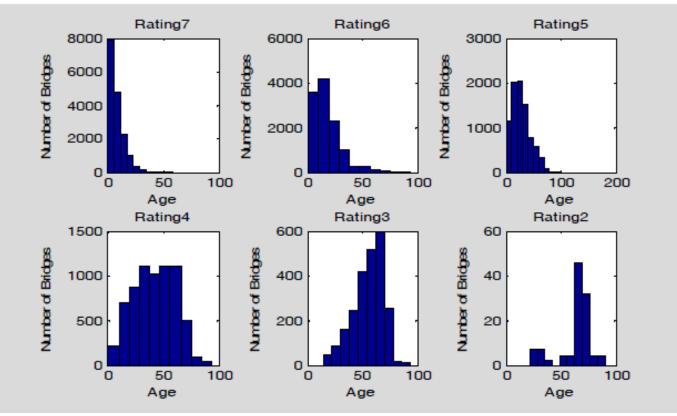
Predicted distress

Estimated time to reach rating of 4

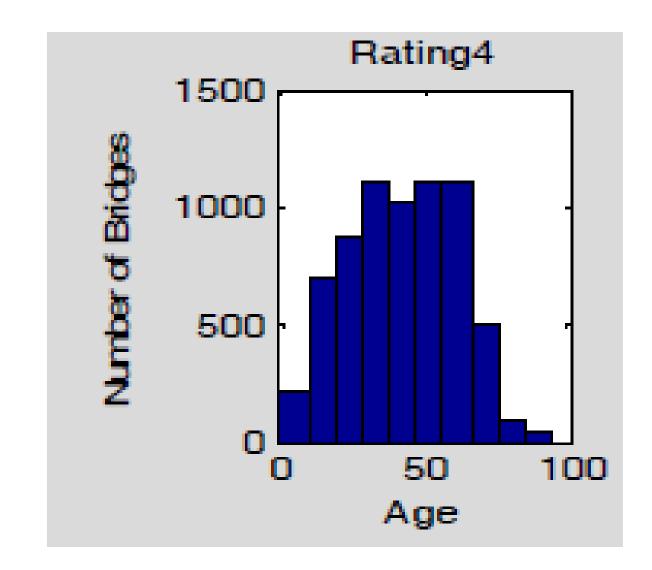
BlackEpoxy-coated35 years70 years

Performance of epoxy-coated bars showing substantial improvement over uncoated bars

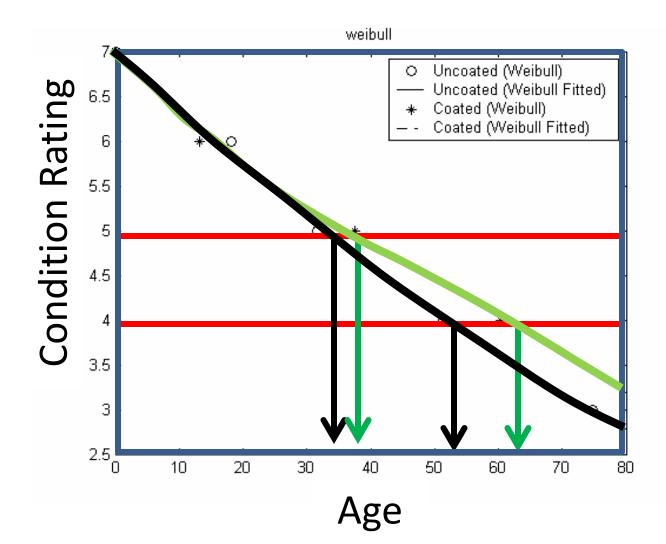
NYDOT STUDY (2009)


2009 Bridge Element Deterioration Rates

- Statistical analysis of 17,000 structures
 NYSDOT bridge inspection database
- Markov chains and Weibull-based approaches
- Data going back to 1981


Agrawal, A.K. and Kawaguchi, A.; The City College of New York

Weibul Analysis


Uses statistical distribution of rating vs bridge age

Distribution of rating 4 vs age

Weibul – coated vs uncoated

Life prediction

Rating	Black		Ероху	
Analysis	Markov	Weibull	Markov	Weibull
7 to 5	32	31.5	38	37.6
7 to 4	49	43	62	60

Conclusions

 Structural decks with epoxy-coated reinforcement perform significantly better than those with uncoated reinforcement, especially in the later years.

KU STUDIES FOR KDOT

Draper, Darwin, Browning, Locke, Evaluation of Multiple Corrosion Protection Systems for Reinforced Concrete Bridge Deck

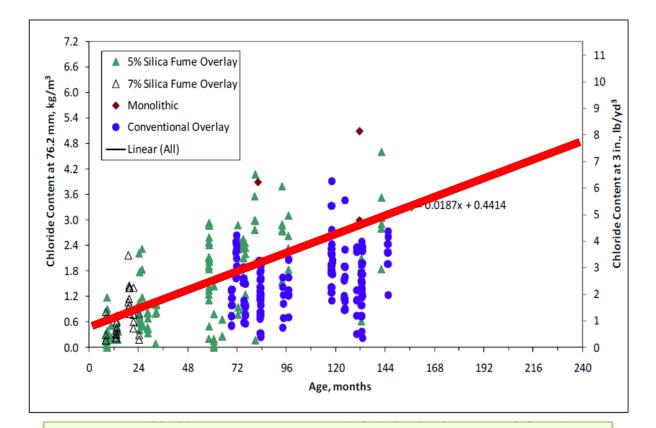
Program

- Chloride to cause corrosion (threshold)
- Rate of corrosion
- Field chloride levels

- Materials
 - Uncoated steel
 - With and without corrosion inhibitors
 - Epoxy-coated steel
 - With and without corrosion inhibitors
 - Type 2205 stainless steel

Test specimen types

Corrosion-Initiation Beam (CI) Specimen


Measured Corrosion Thresholds

System	Threshold (lb/yd ³)	Relative threshold
Uncoated	1.58	1
Epoxy Coated	7.28	4.6
Inhibitors	0.83 - 3.05	0.52 – 1.9
Inhibitors and ECR	1.69 - 9.85	1.1 – 6.2
Type 2205	26.4	16.7

Rate Cracked Concrete Specimens

	Propagation (years)	Relative rate
Uncoated reinforcing	7	1
Epoxy-coated reinforcing	25	3.6
Corrosion inhibitor	7 - 27	1-3.9
Corrosion inhibitor & epoxy- coated reinforcing	25 - 46	3.9 – 6.6
Type 2205 stainless-steel	359	51

Chloride Data at cracks 3 in. depth, AADT > 7500

C(t) = 0.0316.t + 0.746

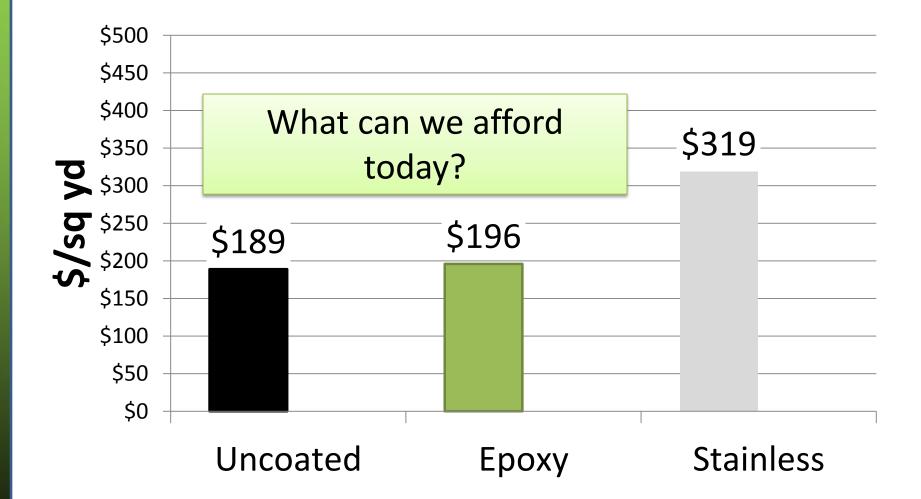
Where t = time (months) C(t) = chloride content (lb/yd³)

Estimated performance – cracked concrete

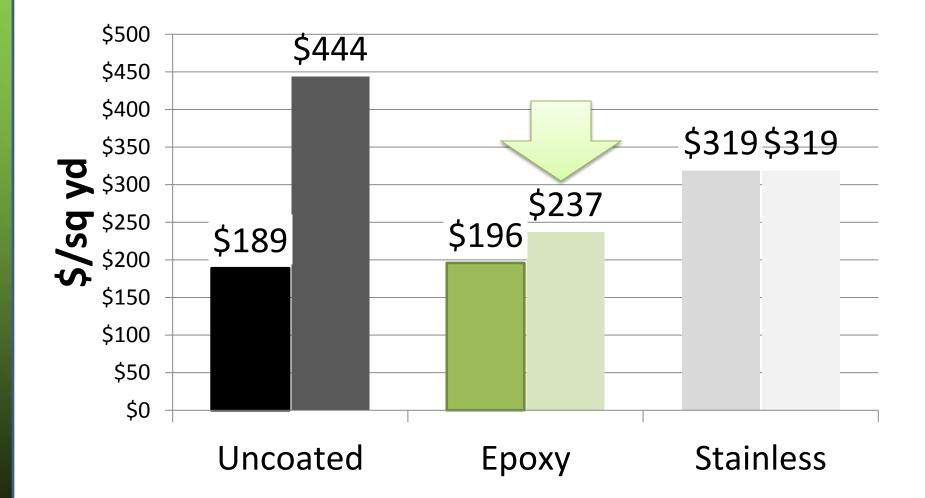
	Initiation (years)
Uncoated reinforcing	2
Epoxy-coated reinforcing	20
Corrosion inhibitor	1 - 4
Corrosion inhibitor & epoxy- coated reinforcing	3 - 24
Type 2205 stainless-steel	68

Estimated performance – cracked concrete

	Initiation (years)	Propagation (years)
Uncoated reinforcing	2	7
Epoxy-coated reinforcing	20	25
Corrosion inhibitor	1 - 4	7 - 27
Corrosion inhibitor & epoxy- coated reinforcing	3 - 24	25 - 46
Type 2205 stainless-steel	68	359


Estimated performance cracked concrete

	Initiation (years)	Propagation (years)	Time to first repair (years)
Uncoated reinforcing	2	7	14
Epoxy-coated reinforcing	20	25	50
Corrosion inhibitor	1 - 4	7 - 27	16 - 33
Corrosion inhibitor & epoxy- coated reinforcing	3 - 24	25 - 46	50 - 63
Type 2205 stainless-steel	68	359	432
Time to repair = initiation + propagation + 5 years 25			


Economic Analysis

- Net present value (NPV)
 - Concrete and reinforcing costs
 - Repair costs and repair life
 - Discount rate (4%)
 - High discount rates reduce long term costs

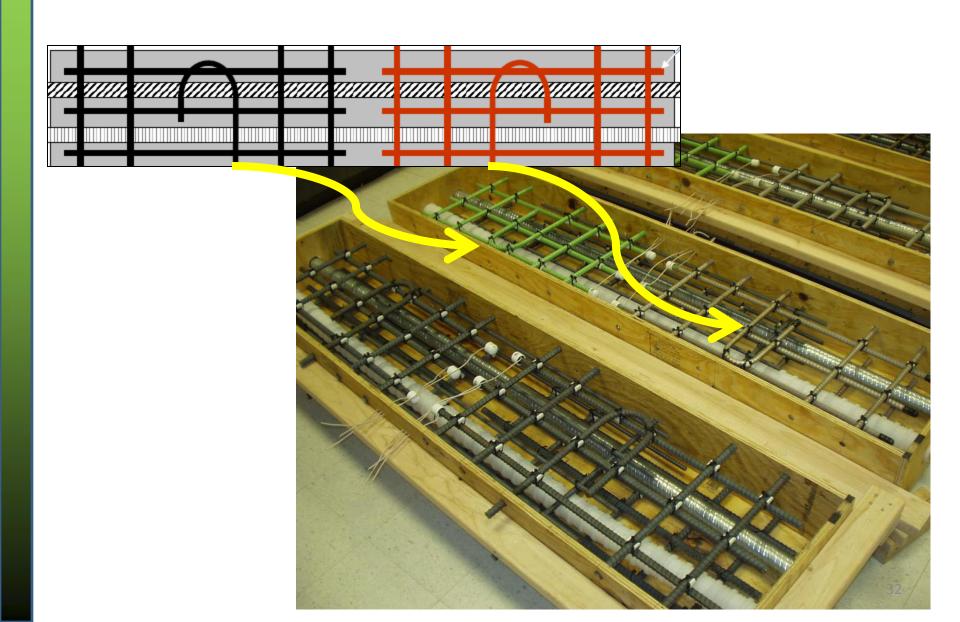
Initial Cost

Life-cycle cost

Conclusions from Kansas Study

- Uncoated reinforcement exhibits the highest corrosion rates
- Epoxy coated bars have higher corrosion threshold and lower corrosion rate than uncoated bars
- LCA shows Type 2205 stainless steel is \$82/sq yd than epoxy-coated reinforcement

FHWA Research


FHWA TURNER-FAIRBANKS LABORATORY

Laboratory

- 12 different bar types from 11 sources
 - Epoxy-coated*
 - Dual-clad*
 - Galvanized*

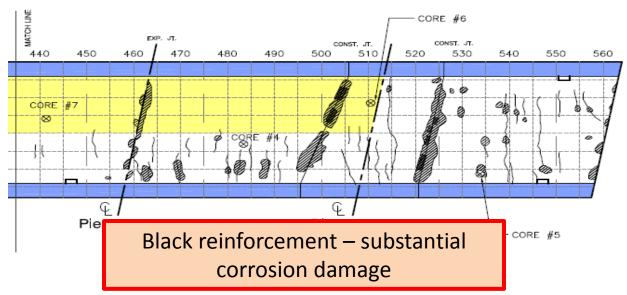
Defects added 0.15, 0.5, 1.0%

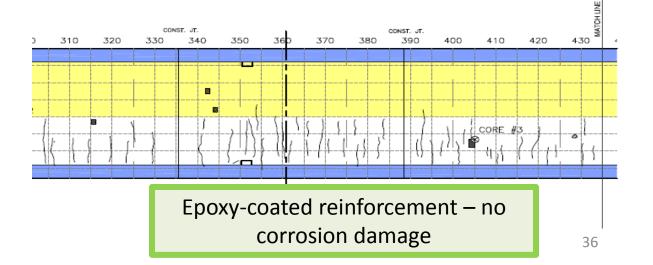
- Low carbon chromium
- Steel alloys
- Stainless clad
- 2205 Stainless steel

Preliminary Findings

- Use of fusion-bonded coated bars in both mats offered the best corrosion resistance – epoxy, and dual coated
- Alloyed bars did not provide adequate corrosion resistance
 - A1035 low carbon-chrome
 - Duracorr
 - 3CR12

Preliminary Findings (con't)


- Solid stainless and stainless clad bars exhibited very good corrosion performance
- Galvanized bars may be used in moderately corrosive environments


WV STUDIES

West Virginia 2009 – 34 yo deck

SUMMARY

Conclusions

- Field research (NY, MI, WV) shows long lives of decks with epoxy-coated reinforcing steel
- Laboratory data (KU, FHWA) showing epoxy and stainless performing well
- Cost analysis shows epoxy-coated reinforcing provides lowest lifecycle costs (KU)

Celebrating 40 years of improved materials and manufacturing of epoxy-coated reinforcing steel

www.epoxyinterestgroup.org

