PERFORMANCE OF BRIDGE DECKS CONTAINING EPOXY-COATED REINFORCING BARS

Concrete Bridge Conference David McDonald, Ph.D., P.E., FACI February 2010

INTRODUCTION

What we have learned

- Field
- Specifications
- Manufacturing

Epoxy Bar Use

- 2nd most common strategy to prevent reinforcement corrosion
 - After increased cover
- USA, Canada, Middle East, Japan, and India

- 700,000,000 ft² of decks
 - 65,000 bridges in the US alone
 - ~600,000 ton/yr
 - 10 15% of all rebar

SPECIFICATIONS

Standard Specifications

- ASTM A775/A775M
 - Standard Specification for Epoxy-Coated Steel Reinforcing Bars
- ASTM A934/A934M
 - Standard Specification for Epoxy-Coated Prefabricated Steel Reinforcing Bars
- ASTM D3963/D3963
 - Standard Specification for Fabrication and Jobsite Handling of Epoxy-Coated Steel Reinforcing Bars
- ASTM A884/A884M
 - Standard Specification for Epoxy-Coated Steel Wire and Welded Wire Fabric for Reinforcement
- AASHTO M284
 - Standard Specification for Epoxy-Coated Reinforcing Bars
- AASHTO M317
 - Standard Specification for Epoxy-Coated Reinforcing Bars: Handling Requirements for Fabrication and Job Site

ASTM A775 Manufacturing specifications

Criteria	1980's	2007
Bar anchor profile	_	1.5-4 mil
Coating delay after blasting	< 8 hours	< 3 hours
Coating thickness	90 percent within 5-12 mil	7-12 mil (Nos. 3-5) 7-16 mil (Nos. 6-18)
Coating continuity	< 2 holidays per foot	< 1 holiday per foot
Coating flexibility	120 degree bend	180 degree bend
Cathodic disbondment test	_	Yes

D3963 Field Handling

Criteria	1980's	2007	
Permissible damage	No patch for damage < 0.1 in ² Maximum damage level 2 percent	All damages must be patched Maximum damage level 1 percent	
External storage protection	_	Yes, if > 2 months	

FIELD PERFORMANCE

Research and Performance

- Over 200 research papers
- Approx 50% of all decks in 2008

Poor concrete and poor bars

- 1986, spalls observed in Florida
 - Typically 1 x 1 ft spalls in tidal zone
- Poor concrete and poor bars
 - Bars left beside ocean
 - Highly salt contaminated concrete
 - Only 25 mm (1 in.) of cover.
 - Poor quality concrete

- Four bridges
 - 1973 to 1978
- Overall condition
 - good to very good, with no or modest levels of corrosion activity.
- Corrosion constrained joints over piers
- Amount of delamination in all decks is very low

OF TRAN

Delaminations in 1996 and 2006

Bridge	Total Delaminated Area 1996		Total Delaminated Area 2006	
0	(ft^2)	(%)	(ft ²)	(%)
19015	0	0.0%	39	1.1%
27062	2	0.0%	84	1.1%
27812	0	0.0%	20	0.3%
27815	0	0.0%	21	0.4%
	•		<<10%	

New York State Department of Transportation 2009

- Used extensive statistical analysis of all state bridge inspection data
- Pool of 17,000 structures
 - "structural decks with epoxy-coated rebars perform significantly better than those with uncoated rebars, especially in the later years."

2009 West Virginia Study

Lawler and Krauss

- Detailed study of six bridges built 1974 – 1976
 - Deck area: 62,000 sq ft
- After 34 36 years
 - Total delamination: 22.7 sq ft
 - Chloride levels above threshold
- Black Bar performance
 - Repaired in 1993 with overlays

Bridge 2930, West Virginia

- \triangle Epoxy-coated: no active corrosion \blacktriangle Epoxy-coated: active corrosion
- □ Uncoated: no active corrosion
- ---Cumulative distribution

■ Uncoated: active corrosion

Conclusions from WV bridges 33 – 35 years old

- Good to excellent condition (33 35 years)
- Black bar decks were overlaid or otherwise rehabilitated at 18 to 21 years
- No delaminations where both mats epoxy-coated reinforcing steel
 - High chloride contents in the concrete
- Factors:
 - high chloride
 - low coating thickness
 - extended exposure to chloride concentrations above the black bar chloride threshold

EXAMPLES OF RECENT USE

Woodrow Wilson Bridge, Virginia/Maryland

I-35 Minneapolis, Minnesota

Bridge of Honor, Ohio

Biloxi Bay Bridge, Mississippi

WHAT WE HAVE LEARNT ABOUT CORROSION MECHANISMS

Epoxy-Coated Bars - Top mat only with deliberate damage Salts **Epoxy-coated ANODE:** Fe \rightarrow Fe⁺⁺ + 2e⁻ reinforcing Electron Flow Charge balance 60-93% through electrolyte Reduction Stat destant of the 15 Plain **CATHODE:** $1/2 H_2O + 1/4 O_2 + e^- \rightarrow OH^$ reinforcing

Epoxy-Coated Bars - Both mats with deliberate damage

ANODE: Fe \rightarrow Fe⁺⁺ + 2e⁻

Epoxy-coated reinforcing

CATHODE: $1/2 H_2O + 1/4 O_2 + e^- \rightarrow OH^-$

Epoxy-coated reinforcing

What has been learnt

- The cathodic reaction is important
 - Use ECR on both top and bottom mats coated to reduce cathodic area
 - Most agencies are now doing this
 - But some are not...
- Even damaged bars perform considerably better than black bars

MANUFACTURING AND QC PROCESS

Plant Certification Program

- CRSI in 1991
- ...capable of producing epoxy-coated steel reinforcing bars in accordance with industry standards and recommendations.
- Almost all plants are certified
- Required by 21 DOT's

FIELD HANDLING

Understand the material

- Improper handling on ANY MATERIAL may reduce its performance
- Any material can be misused or misapplied

Improper handling

- Dragging
- Lifting using chains
- Flexing bundles while lifting
- Using non-approved patching material
- Leaving uncovered in storage for more than 30 days
- Using uncoated bar supports
- Using uncoated tie wire
- Flame cutting
- Using unprotected concrete vibrator

COST/PERFORMANCE CONSIDERATIONS

Performance vs. Cost

Performance

SUMMARY AND CONCLUSIONS

Conclusions

- ECR used in 65,000 bridge structures
 Still excellent performance
- 2nd most common strategy to prevent reinforcement corrosion
- Many favorable field and laboratory studies
 - Even Gen 1 product provided substantial increases in design life
- Cost/performance better than other materials

Materials have changed

- Improved manufacturing specifications
 ASTM A775
- Improved manufacturing
 - CRSI certification
- Improved field handling
 ASTM D3963
- Improved concrete technology
- Improved design
 - Both mats using epoxy-coated bars

www.epoxyinterestgroup.org

