Corrosion Protection for Concrete Structures in Marine Environments

D.B.McDonald, Ph.D., P.E, FACI

\$182.3 billion

Koch, Brongers et al. 2001

http://www.fyfeco.com/images/projects/nassco-pier.jpg

ALL 4 factors required for corrosion to occur

CATHODE Accept electrons

Rebar in Concrete

ELECTRICAL PATH

ANODE Release electrons

CATHODE Accept electrons

Carbonation CO_2 reacts with cement

Chloride

- Deicing salts
- Marine waters
 - iron chloro-complex
 - green rust
- Expansion occurs

Courtesy W.R. Meadows

Tutti Model

Chloride Threshold

Cracked Beam (CB) Specimen

Concrete Modification

- Reduce permeability
 - w/cm
 - Pozzolans
 - silica fume
 - fly ash
 - slag cement

Increased risk of cracking

Concrete Cracking

- ASTM C1581
- Thermal and early age cracking
 - Curing
 - Placement
 - Form removal

Effect of w/b on chloride penetration

Swamy, R.N., "Design for Durability with Galvanized Reinforcement," in Galvanized Steel Reinforcement in Concrete, Ed. Yeomans, S.R., Elsevier, 2004.

Corrosion Inhibitors

- ASTM C1582
- Dependent on the dosage
- "Report on Chemical Admixtures for Concrete."
 - ACI Committee 212
- Do these leach?
- Performance in cracked concrete?

REINFORCING BAR

Types

- Epoxy-coated
 ASTM A775, A934
- Galvanized
 - ASTM A767
- Stainless Steel
 ASTM A955
- Others

– ASTM A1035, A1055, Glass Fiber

Epoxy-coated Reinforcing Steel

- ~600,000 ton/year
 - 10 to 15% of all reinforcing steel (USA/Canada)
- Over 100,000 structures
- Standards
 - A775 (Green)
 - A934 (purple/grey)

98% reduction in corrosion rate Substantially higher chloride threshold

Certification

 Only corrosion-resistant bars under an Independent certification program

 Certification required by over 25 Transportation Agencies

Marine Performance

- Florida DOT
- 2010 paper most predicted to have 100 year life
- Few structures: Poor performance
 - Poor materials
 - Poor workmanship
 - Severe environment

Galvanized Reinforcing

- ASTM A767
- Develop oxide layer for protection
 - Dependant on cement and zinc chemistry
 - Microstructure may significantly affect performance
- May galvanically corrode

Stainless Steel Reinforcing

- "Stainless steel isn't"
 - Roper 1986
- ASTM A955

Contains corrosion tests

- Performance largely depends on the chemistry
 - Excellent: 316, 2205, 2304
 - Fair: 2201, 3Cr12

Progreso Pier (1940)

 Generally good performance

 "serious laminated corrosion on the visible reinforcement and the reinforcement area was reduced to approximately 60 – 70%."

Naval Facilities Engineering Command

 Magnetic Silencing Facility, Point Loma

- Losses of stainless steel cross-section exceeded 50 percent
 - <u>The reinforcement is</u> <u>inadequate for its</u> <u>environment</u>
 - despite being of stainless steel composition, which has generally been considered superior in marine concrete

Other Materials

- ASTM A1035/3CR12

 Low grade stainless steels
- ASTM A1055

 Epoxy and zinc layers
- Glass and Basalt fiber bars

 largely considered
 experimental

OTHER FACTORS

Other Factors

- Sustainability
- Availability
- Cost

http://facilitiesdc.sr.unh.edu/Project_Files/MarineResearchFacility/images/20070620TopRebarCage Bent7.jpg

Sustainability

- Epoxy-coated and galvanized bars
 - over 95 percent of recycled materials

- Stainless
 - over 75 percent recycled materials
 - High processing energy

Performance vs. Cost

Availability

- Galvanizing
 - few have experience with reinforcing bars
 - Bar lengths
 - Chromate treatment
- Epoxy-coated reinforcing bars

 widely available
- Stainless steel reinforcing
 - Lead times
 - Care during Fabrication

Summary And Conclusions

- Wide choice in the selection of materials for corrosion protection.
- Concretes with a low water-cement ratio and pozzolans should be chosen.
- Epoxy-coated bars
 - lowest cost method of meeting 100 year design in marine environments
- Overall performance is not the only criteria
 - Sustainability
 - Initial and Life-cycle Cost
 - Availability

http://facilitiesdc.sr.unh.edu/Project_Files/MarineResearchFacility/images /2008-07-01.jpg

